Identifying fibre orientations for fracture process zone characterization in scaled centre-notched quasi-isotropic carbon/epoxy laminates with a convolutional neural network
نویسندگان
چکیده
This paper presents a novel X-ray Computed Tomography (CT) image analysis method to characterize the Fracture Process Zone (FPZ) in scaled centre-notched quasi-isotropic carbon/epoxy laminates. A total of 61 CT images small specimen were used fine-tune pre-trained Convolutional Neural Network (CNN) (i.e., VGG16) classify fibre orientations. The proposed CNN model achieves 100% accuracy when tested on same scale as training set. However, drops maximum 84% unlabelled specimens having larger scales potentially due their lower resolutions. Another code was developed automatically measure size FPZ based identified 0°plies largest which agrees well with manual measurement (on average within 3.3%). whole classification and process can be automated without human intervention.
منابع مشابه
A Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملNon-melanoma skin cancer diagnosis with a convolutional neural network
Background: The most common types of non-melanoma skin cancer are basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). AKIEC -Actinic keratoses (Solar keratoses) and intraepithelial carcinoma (Bowen’s disease)- are common non-invasive precursors of SCC, which may progress to invasive SCC, if left untreated. Due to the importance of early detection in cancer treatment, this study aimed...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملLearning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Engineering Fracture Mechanics
سال: 2022
ISSN: ['1873-7315', '0013-7944']
DOI: https://doi.org/10.1016/j.engfracmech.2022.108768